Raising Your Commercial IQ

102. Real Estate Investment Analysis

Neil Osborne M.B.A.
DL. (604) 988-9964
nosborne@investitsoftware.com
Investit Software Inc.
Toll-free 877-878-1828
North Vancouver BC
Canada
www.investitacademy.com
investit@investitsoftware.com
www.investitpro.com
N Osborne Copyright
All rights reserved

Table of Contents

Objectives 3
Valuing commercial properties 4
Apparent Cap Rate versus the True Cap Rate 4
Factors that distort the Cap Rate. Examples 4
Long Term Real Estate Investment Analysis Introduction 7
Choosing between two investments 7
Calculating the Net Cash Flows before Tax 8
Financial Returns that incorporate the Time Value of Money 10
The Internal Rate of Return (IRR) 10
Relationship between the Internal Rate of Return (IRR) and Compound Interest 12
Why we use the Internal Rate of Return (IRR) 12
Financial Calculators 13
Net Present Value (NPV) 13
Determining the Discount Rate or Desired Return (IRR) 14
Modified Internal Rate of Return (MIRR) 15
The building blocks of Real Estate Investment Analysis 16
Real Estate Investment Analysis. Case Study 17
Common real estate investment analysis reports 19
Goal Seeking 20
Appraiser's Approach to Present Value 26
Determining the optimum holding period 28
Summary. The building blocks of investment analysis 33
Cash Flows. Timing and Sign Conventions 34
Timing and Sign Conventions. Summary 38
Cap Rate versus Internal Rate of Return (IRR) 39
Cap Rate and the Internal Rate of Return (IRR) Case Study 42
When does the Cap Rate equal the Internal Rate of Return? 44
Cap Rate versus Internal Rate of Return (IRR). Summary 45
What does the term "Return" mean? 46
Real Estate Taxation. Overview 47
Capital Gains Tax 48
Depreciation Claims 49
Amortization 49
Recaptured Depreciation Tax 50
Calculating Recaptured Depreciation 52
Properties that may be hard to sell because of tax implications 53
Properties that may be hard to sell because of mortgage restrictions 54
Introductory Case Study. Real Estate Investment Analysis 55
The Impact of Financial Leverage. Case study 56
Accumulated Wealth 60
Appendices 61
Information Sources and web sites 61

Objectives

This Video assumes that those attending understand the basics of commercial real estate or have participated in the Video "How to Value Income Properties".

The overall objective of the Video is to provide an understanding of how to carry out in-depth real estate analysis investment and lease analysis and how to apply investment analysis techniques to different types of real estate decisions to help you list, sell or lease real estate during these challenging times.

Topics

1. The significant weaknesses in using Cap Rates to make real estate investment decisions compared to the discounted cash flow approach. Examples illustrating the weakness of the Cap Rate approach to establishing the value
2. Time value of money concepts. The Internal Rate of Return (IRR) and Net Present Value financial measures
3. Real estate investment and discounted cash flow analysis
4. Risk assessment
5. The importance of financial leverage on the return on investment

NOTE: USA versus Canadian calculations

The examples provided in the manual are for the USA, where the default mortgage setting for the "Compounding Period" is monthly.

For Canada, the entries are the same except for mortgages, where the "Compounding Period" is semiannually and the tax inputs and calculations are different.

The differences between the USA \& Canadian tax calculations will be briefly explained.

Valuing commercial properties

Introduction

Using the sale price and the Net Operating Income to calculate the Cap Rate can result in an incorrect Cap Rate because of factors that you were not aware of that influenced the price.

Apparent Cap Rate versus the True Cap Rate

The "Cap Rate" is just the tip of the iceberg

Factors that distort the Cap Rate. Examples

The impact of "urgent major repairs" on the Sale Price
Sale Price: $\$ 3,200,000$ Net Operating Income: $\$ 275,000$ per year
"Apparent Cap Rate" $=\frac{\$ 275,000 \times 100}{\$ 3,200,000}=8.59 \%$
BUT... the buyer deducted $\$ 425,000$ because the roof had to be replaced, the elevator upgraded Sale Price based on "Normal" building = \$3,200,000 $+\$ 425,000=\$ 3,625,000$
"True Cap Rate" $=\frac{\$ 275,000 \times 100}{\$ 3,625,000}=7.59 \%$
True Cap Rate is 7.59\% Apparent Cap Rate" of 8.59\% A 12.00\% difference

Impact of the timing of lease renewal on cash flows and the property value

Property A			\$29	\$32
	\$23	\$26		
\$20				
1 Yr	5 Yrs	5 Yrs	5 Yrs	5 Yrs
Property B				\$32
\$20		16 years		

Question: What is the difference in value between Property A and Property B?
The rentable area is $20,000 \mathrm{Sq}$. Ft
Present Value Property A at 13.00% is $\$ 3,514,593$

```
Base Rent
Entry Choice: $ per Year
Year 1 Jan Stepped Projection (Lease)
    Term 1: $400,000 per Year for 1 year
    Term 2: Changed to $460,000 per Year for 5 years
    Term 3: Changed to $520,000 per Year for 5 years
    Term 4: Changed to $580,000 per Year for 5 years
    Term 5: Changed to $640,000 per Year for 5 years
    Net Present Value (NP V) at 13.00% $3,514,593
```

Present Value Property B at 13.00\% is \$2,960,062

```
Base Rent
Entry Choice: $ per Year
Year 1 Jan Stepped Projection (Lease)
    Term 1: $400,000 per Year for }16\mathrm{ years
    Term 2: Changed to $640,000 per Year for 5 years
    Net Present Value (NP V) at 13.00% $ 2,960,062
```

NPV at a 13% Discount Rate Property A: $\quad \$ 3,514,593$
NPV at a 13\% Discount Rate Property B: 2,960,062
Difference $\quad \$ 554,531$ (16\%)

Cap Rates. Summary

Using a Cap Rate to determine the value of an income property is a very simplistic approach fraught with difficulties.

A more realistic approach is "Discounted Cash Flow Analysis" which projects the cash flow over time and takes into account the "Time Value of Money"

Comparing Case A with Case B above was an example of "Discounted Cash Flow Analysis" and the use of Net Present Value

Long Term Real Estate Investment Analysis Introduction

Projects the cash flows over time and takes onto account "The Time Value of Money" Called Discounted Cash Flow Analysis.

I'm going to borrow $\$ 10,000$ from you and offer you the following two repayment plans. The annual payment is at the end of each year. Which would you prefer as the lender Plan A or Plan B?

Year	$\underline{\text { Plan } A}$	Plan B
0	$\$<10,000>$	$\$<10,000>$
1	4,000	6,000
2	5,000	5,000
3	6,000	4,000
Total	$\$ 15,000$	$\$ 15,000$
Return (IRR)	$-\quad \%$	

Which would you prefer?
Plan \qquad
Why: \qquad
\qquad

You have intuitively applied "Discounted Cash Flow Analysis" and taken into account the "Time Value of Money"

Always balance "Risk" and "Reward"

Which is more Risky? Plan A or B \qquad
Choosing between two investments
You have a choice to invest in either Property A and B. Each property will generate the following net cash flows. Which one would provide you with the best overall financial return?

Net Cash Flow		
Year	Property A	Property B
0 \$	\$ $<1,000,000$ >	\$ $<1,200,000>$ - (Purchase Price - Mortgage = Equity)
1.	81,000	58,000 -(Net Operating Income - Debt Service)
2.	83,000	60,000 (= Cash Flow before Tax)
3.	84,000	61,000
4.	87,000	67,000
5.	87,000	68,000
6.	89,000	69,000
7.	<10,000>	70,000
8.	90,000	112,000
9.	92,000	115,000
10.	93,000	117,000
11.	96,000	119,000
12	1,950,000	2,500,000 - (Cash Flow Yr. 12 + Sale Proceeds)
Return (IRR))	___ \% Internal Rate of Return (IRR)

Calculating the Net Cash Flows before Tax

Analysis Time Period

In the example above the "Analysis Period" or the "Holding Period" is 12 years. The property will be sold at the end of the "Analysis Period".

Acquisition (Net Cash Flow)

The purchase is made at "Time Period Zero" and the Net Cash Flow is:
Purchase Price
Less: Mortgage
Equity
(Net Cash Flow. Time Period zero)
Note that the Net Cash Flow or Equity which is the cash invested is shown as a negative. For Property A it is minus $\$ 1,000,000$ because this is an outflow of cash. In contrast, revenue would be shown as a positive number because revenue is an inflow of cash.

Yearly Cash Flows

The calculation of the yearly cash flow is:
Potential Gross Income
Less: Vacancy Loss
Effective Gross Income
Less: Operating Expenses
Net Operating Income
Less: Debt Service (Principal \& Interest Payments)

Cash Flow before tax

Cash Flow in the Last Year

At the end of the last year of the "Analysis Period" the building is sold and we calculate the "Sale Proceeds" as follows:

Sale Price
Less: Real Estate \& legal fees
Repayment of the outstanding mortgage balance
Sale Proceeds
The Net Cash Flow in the last year is:
Net Cash Flow = Operating Cash Flow + Sale Proceeds

Financial Returns that incorporate the Time Value of Money

We need tools to calculate the financial returns which take into account the "Time Value of Money" to:

1. Calculate the financial return on the money invested. Is the financial return acceptable given the degree of risk and the financial returns available from other investment opportunities of similar risk?
2. Compare alternate investment opportunities.

The financial tools used are the:
Internal Rate of Return (IRR)
Net Present Value (NPV)
Modified Internal Rate of Return (MIRR).
Also called the "Financial Management Rate of Return (FMRR)

The Internal Rate of Return (IRR)

The IRR is the annual compounding return on investment
Why is it called the Internal Rate of Return (IRR)?
Because of the Reinvestment Assumption
If the IRR is 13% this assumes that:
a) Excess funds are reinvested at 13%
E.g. In Year 4 if the cash flow is $+\$ 30,000$ it will in reinvested at 13%
b) If there is an operating loss, funds are borrowed at 13%
E.g. In Year 6 if there is a negative cash flow of - $\$ 30,000$ it will be borrowed at 13%

The reinvestment assumption can cause the Internal Rate of Return (IRR) to be overstated

Think Compound Interest

An Investor has $\$ 300,000$ to invest. They can:
a) invest $\$ 300,000$ in a building and achieve an Internal Rate of Return (IRR) of 9.00%
b) loan $\$ 300,000$ as a second mortgage at an Interest Rate of 9.00%

From a financial perspective, the financial returns are the same. Both provide a 9.00% interest rate on the money invested.

Always balance Risk and Rewards

Which is more risky?

Buying a building with a down payment of $\$ 300,000$
Loan $\$ 300,000$ as a second mortgage

Investing versus Lending

Invest in Real Estate	Second Mortgage Conservative lender
Return is unknown Could lose or make money	Return is known The interest rate
Cash flow and return is uncertain Based on assumptions and projections	Payment of principal and interest is known
More things can go wrong E.g. Major tenant moves out Building develops toxic mold	Very little can go wrong
Higher risk Requires a higher return Potential for a large capital gain	Less risky than real estate investing

Relationship between the Internal Rate of Return (IRR) and Compound Interest

If you invest $\$ 400,000$ and get back the following cash flow per year at the end of each year, what is your annual return?

```
0 $<400,000>
1 160,000
2 160,000
3 160,000\ldots...uniform annual cash flow
```

Because there is a uniform annual cash flow, any mortgage calculator can calculate the annual compound interest rate for the above cash flow.

Present Value: <400,000>
Future value: 0
Payment: \$160,000 per year.
Payment: At end of year.
Compounding Frequency: Annual
Calculate the Interest Rate
Answer: Interest Rate is 9.70\%
If you put the cash flow into a calculator that has an IRR and NPV function
The Internal Rate of Return (IRR) will be 9.70% which is the same as the interest rate of 9.70%.

Why we use the Internal Rate of Return (IRR)

If you invest $\$ 400,000$ and get back the following cash flow per year at the end of each year.
What is your annual return?

```
What is your annual return?
    \(\$<400,000>\)
    130,000
    190,000
    \(225,000 \ldots\) uneven annual cash flow
```

Answer: \qquad \%

A standard mortgage calculator can't calculate the annual interest rate because there is an uneven cash flow. You need a financial calculator with IRR and NPV features.

Financial Calculators

The easiest Financial Calculator to use is the Texas Instrument BAll Plus and BAll Plus Professional.
Another popular calculator is the HP-10B but it is a more difficult calculator to use, particularly in Canada where mortgages are compounded semi-annually.

Net Present Value (NPV)

The value today of the cash flow when taking into account the "Time Value of Money"
Net Present Value of the cash flow is calculated using the Investor's "Desired Return", "Discount Rate" or "Opportunity Cost"

If the Net Present Value is positive:

The return is greater than the Investor's desired return or discount rate

If the Net Present Value is negative:

The return is less than the Investor's desired return or discount rate
The Net Present Value (NPV) tells you how much you can pay for the property to get your desired return.
Following are the results of the analysis of an apartment building

	Financial Retums (Before Tax) with Financing
Internal R ate of Retum (RR)	10.34%
Net Present Value (NP V) at 13.00\%	$(\$ 352,044)$
Modifed Internal Rate of Return (MIRR)	9.22%
Short Term Financing Rate (Be fore Tax)	8.000%
Short Term Reinvestm ent Rate (Be fore Tax)	3.000%

The Net Present Value at 13.00% is $<\$ 352,044>$
To achieve a return of 13.00%, the purchase price has to be reduced by $\$ 352,044$
If the priced is dropped by $\$ 352,044$ the Internal Rate of Return (IRR) will be exactly 13.00%

| Financial Returns (Before Tax) with Financing | |
| :--- | :--- | :--- |
| Internal Rate of Retum (IRR) | 13.00% |
| Net Present Value (NP V) at 13.00% | $\$ 0$ |
| Modified Internal Rate of R eturn (MIRR) | 11.37% |
| Short Term Financing Rate (Be fore Tax) | 8.000% |
| Short Term Reinvestment Rate (Be fore Tax) | 3.000% |

Determining the Discount Rate or Desired Return (IRR)

We try to find published information about returns with similar risk
Government Bond Rate. Not useful because of the very low risk
A useful comparison is the second mortgage rate for the property under consideration
Example: The second mortgage rate is 8.50%
Investor's viewpoint.
If I can't get an Internal Rate of Return (IRR) higher than 8.50% then I'd be better off being a second mortgage lender

For most real estate investments, we need to add 1.00% to 5.00% depending on the risk to the second mortgage rate to take into account the additional risks of buying a property compared to being a conservative second mortgage lender.

Discount Rate or Desired Return. 9.00\% up to 15.00% or higher depending on risk.
A typical figure for a medium risk investment is around 13.00% IRR before tax
Exception.
Prime rental apartments with very low Cap Rates (4.00\% to 5.00\%) because of the low vacancy risk and potential for strong capital appreciation

For a Cap Rate of 4.50%, the IRR is around 6.50%
Note: You cannot easily compare a Cap Rate with an Internal Rate of Return (IRR)
To compare the Cap Rate with the Internal Rate of Return IRR) you need to carry out a cash flow analysis on a specific property.

Modified Internal Rate of Return (MIRR)

The Internal Rate of Return (IRR) reinvestment assumption may cause an overstatement of the Internal Rate of Return (IRR). As an example:

Internal Rate of Return (IRR) is 13.32\%
Positive cash flows will be reinvested at 13.32%
Negative cash flows or losses will be borrowed at 13.32\%
An alternate to the Internal Rate of Return (IRR) is the Modified Internal Rate of Return (MIRR)
The Modified Internal Rate of Return (MIRR) uses a short term:
Financing Rate. Example 7.50\%
Reinvestment Rate. Example 1.50\%
Example. The financial results of a rental apartment building cash flow analysis
Internal Rate of Return (Before Tax): 13.32\%
Modified Internal Rate of Return (MIRR): 11.45\%
Short Term Financing Rate (Before Tax): 7.50\%
Short Term Borrowing Rate (Before Tax): 1.50\%

Financial Retums (Before Tax) with Financing	
Internal R ate of Retumn (RR)	13.32%
Net Present Value (NPV) at 13.00%	$\$ 36,828$
Modified Internal Rate of Return (MIRR)	11.45%
Short Term Financing Rate (Before Tax)	7.500%
Short Term Reinvestm ent Rate (Be fore Tax)	1.500%

The building blocks of Real Estate Investment Analysis

The building blocks of Real Estate Investment Analysis

How much should I pay to get a 13% IRR over ten years ?

Initial Investment plus future capital expenditures

Finance \& refinanced over the $\mathbf{1 0}$ years
Building generates revenues \& incurs expenses

Building is sold at the end of $\mathbf{1 0}$ years
Is this a good deal?
How risky?

The best way to analyze long term real estate investments is to develop the Net Cash Flow. Cap Rates are far too simplistic for properly evaluating a real estate investment.

The result is the Net Cash Flow Report. The financial measures we use are the Internal Rate of Return (IRR), Net Present Value (NPV) and Modified Internal Rate of Return (MIRR)

Real Estate Investment Analysis. Case Study

Mixed-Use Building

One Bedroom Units: 20
Two-bedroom Units: 9
Retail space: 5,000 Sq. Ft
Parking: 40 spaces
Analysis Period: 10 years
Investment (Asking Price) \$3,000,000 (Land: \$1,000,000 Building: \$2,000,000)

Financing

Option A. Conventional first mortgage with 60\% Loan to Value Ratio
First Mortgage: \$1,800,000 Interest 6.00\% 25 Amortization: 25 years
Loan to Value Ratio: 60\%
Equity: \$1,200,000 (40\%)

Option B. Seller provides a second mortgage for 5 years

To reduce the buyer's equity from 40% to 25% the seller provides a second mortgage of $\$ 450,000$ for five years.

First Mortgage: \$1,800,000, Interest Rate: 6.00\%, 25 Amortization for 5 years Loan to Value Ratio: 60\%

Second mortgage: $\$ 450,000$ interest only mortgage at 8.00% for 5 years
Equity: \$750,000 (25\%)
At the end of the first 5 years:

1. The outstanding balance of the first mortgage and the second mortgage of $\$ 450,000$ is paid off.
2. A new first mortgage is placed on the property beginning of Year 6 January using a 1.25 Debt Service Coverage Ratio for $\$ 2,500,000$ at 6% interest, 25 year amortization.

Revenues \& Expense Projections

REVENUE	Number	First Year	Increase per Yr.	Vacancy
One Bedroom Units	20 Units	\$900 per mos.	3% per year compounding	3\%
Two-bedroom Units	9 Units	\$1,100 per mos.	4\% per year compounding	3\%
Laundry	29 Units	\$15 per mos.	5% per year compounding	3\%
Retail Space	$\$ 15$ per Sq. Ft per yr for 3 years then $\$ 16.39$ for 5 years then $\$ 19.47$ per Sq. Ft per yr.			
Base Rent				Zero
Additional Rent (TIM's)	$\$ 3.00$ per Sq. Ft per year increasing at 3.50% compounding per year			
Parking	40 spaces	\$45 per month	5\% per year compounding	Zero
EXPENSES				
Property Taxes	-	\$90,000 per Yr.	5% for the next two years then 4\% per year compounding	
Insurance	-	\$45,000 per Yr.	5\% per year compounding	
Maintenance. Rental Units	29 Units	\$400 per Yr.	4\% per year compounding	
Maintenance. Retail Space		\$700 per mos.	3\% per year compounding	
Resident Caretaker	-	\$3,000 per mos.	4\% per year compounding	
Property Manager	-	4\% of Effective Gross Income		
Other Expenses	-	3\% of Potential Gross Income		

Sale at the end of the 10 year Analysis Period

Sale Price. Based on a 7.00% Cap Rate using the Net Operating Income for the year following the sale
Real Estate Fees: 4.00% of the Sale Price
Selling Expenses: \$6,000
Legal Fees: \$5,000

Questions

1. How much to pay for the property to get a 13% return (Internal Rate of Return) before tax?
2. How does the return (Internal Rate of Return) change if the seller carries a second mortgage for $\$ 450,000$ interest only loan at 8% for five years? The property will be refinanced at the end of the fifth year using a Debt Service Coverage Ratio (DSCR) of 1.25
3. How much money does the investor receive when the property is refinanced at the end of the first five years?

Common real estate investment analysis reports

Option A. Conventional first mortgage with 60\% Loan to Value Ratio

Net Cash Flow Report (Money Tree Diagram)
Provides a broad overview of the investment over the ten year period.

Year	Het Cash Flow (Before Tax) Parklane Place Mixed Use Building					September 06, 2012 Investor Pro Video Parklane Analysis				
	Financing					Operating Cash Flow (Before Tax)		Sale Proceeds (Before Tax)	Net Cash Flow (Before Tax)	
	Investment		Borrow		Paid Back					
Year 1 JarrYear 1 Dec	\$	(3,000,000)	\$	1,800		\$	90,045		\$	(1,119,955)
Year 2 JarrYear 2 Dec					-		83,091	-		83,091
Year 3 Jar-Year 3 Dec		-			-		88.111	-		86.111
Year 4Jarrear 4 Dec		-			-		96.104	-		96,104
Year 5 Jar-Year 5 Dec		-			-		100,298	-		100,298
Year 6 Jar Year 6 Dec		(250,000)			-		104,306	-		(145,694)
Year 7 Jarr Year 7 Dec		.			-		108.745	-		108,745
Year8Jar-Year 8 Dec		-			-		113.019	-		113.019
Year9Jar-Year 9 Dec		-			-		131,549	\cdot		131,549
Year 10 Jan-Year 10 Dec		-			(1,374,335)		138.021	3,825,791		2,587,478
								Total	\$	2,040,745
Financial Returns (Before Tax) with Financing										
Internal Rate of Return (IR			12.04%		If the Purchase Price was reduced by $\$ 81,854$ the Internal Rate of Return (IRR) would be 13\%					
Net Present Value (NPV) Modified Internal R ate of R	13.	00\% (MIRR)	$\begin{aligned} & (\$ 81854)< \\ & 10.19 \% \end{aligned}$							
Short Term Financing Rate (Before Tax) 7.000% Short Term Reinvestment Rate (Before Tax) 1.500%					Return (IRR) would be 13\%					

Question

1. How much to pay for the property to get a 13% return (Internal Rate of Return) before tax?

Answer: $\$ 3,000,000-81,854$ (NPV at 13\%) $=\$ 2,918,146$

Purchase Price versus the Desired Return

Example: If we wanted a 13% Return (IRR) the most we can pay for the property is just under $\$ 3,000,000$

Graph. Purchase Price \& Desired Return (B efore Tax)
Parklane Place Mixed Use Building

September 06, 2012 Investor Pro
Video Parklane Analysis

Goal Seeking

How much to pay for the property to get the desired return of 13% ?.

```
Goal Seeking
Desired Return on Imvestment (Discount Rate)
```

Internal Rate or Return (IRR) Before Tax
Internal Rate or Return (IRR) After Tax
Average Cash On Cash Return Before Tax
13.000\% Analysis Period: 10 years 8.450%
0.000% Purchase Price N/A

Goal Seeking Results: Before Tax

```
To achieve an Internal Rate of Return (IRR) of \(13.000 \%\) before tax
```


With financing

```
a) Buy the property for
b) Sell the property for
```



```
\(\$ 4,286,090\) which is a \(3.632 \%\) Annual Compounding Appreciation Rate
```


Overall Operating Cash Flow Report

Show all the inflows and outflows and the financial results over the analysis period of ten years.

Operating Cash Flow Report

Shows the before and after tax cash flows from operations over the analysis period of ten years.

	Operating Cash Flow Yearly Parklane Place Mixed Use Building				Year 5	Year 6	Year 7	Year 8	September 06, 2012 Investor Pro Video Parklane Analysis	
	Year 1	Year 2	Year 3	Year 4					Year 9	Year 10
CASH FLOW BEFORE TAX										
Potential Gross Income	451,620	464,830	478,499	499,035	513,786	528,752	544,640	560,816	592,811	610,201
Less Vacancy \& Credit Loss Allow.	10,201	10,548	10,909	11,263	11,651	12,043	12,459	12,881	13,314	13,767
Effective Gross Income	441,419	454,282	467,590	487,772	502,135	516,709	532,181	547,934	579,497	596,434
Operating Expenses	222,205	232,022	242,310	252,499	262,667	273,234	284,267	295,746	308,779	321,243
Net Operating Income	219,214	222,260	225,280	235,273	239,468	243,475	247,914	252,189	270,718	275,191
Less: Principal Payments	32,041	34,017	36,115	38,343	40,707	43,218	45,884	48,714	51,718	54,908
Interest payments	107,128	105,152	103,054	100,827	98,462	95,951	93,285	90,455	87,451	84,261
CASH FLOW BEFORE TAX	80,045	83,091	86,111	96,104	100,298	104,306	108,745	113,019	131,549	136,021
Less Income Taxat 35.00\%	14,844	15,533	17,325	21,602	23,898	17,429	19,915	22,402	29,939	33,690
CASH FLOW AFTER TAX	65,200	67,557	68,786	74,502	76,401	86,877	88,829	$\mathbf{9 0 , 6 1 7}$	101,610	102,332
InCOME TAX CALCULATIONS										
Net Operating Income	219,214	222,260	225,280	235,273	239,468	243,475	247,914	252,189	270,718	275,191
Less, Interest P ayments	107,128	105,152	103,054	100,827	98,462	95,951	93,285	90,455	87,451	84,261
Depreciation \& Amortization	69,673	72,727	72,727	72,727	72,727	97,727	97,727	97,727	97,727	94,673
Taxable Income	42,413	44,381	49,499	61,720	68,279	49,797	56,901	64,006	85,540	96,257
Income Tax at 35.00\%	14,844	15,533	17,325	21,602	23,898	17,429	19,915	22,402	29,939	33,690

Income \& Expense Statement

	Income \& Expense Statement Yearly Parklane Place Mixed Use Building								September 06, 2012 Investor Pro Video Parklane Analysis		
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10	Year 11
Revenue											
One bedroom Units	216,000	222,480	229,200	235,920	243,120	250,320	258,000	265,680	273,600	281,760	290,400
Two bedroom Units	118,800	123,552	128,520	133,596	138,996	144,504	150,336	156,384	162,540	169,128	175,824
Laundry	5,220	5,568	5,916	5,916	6,264	6,612	6,960	7,308	7,656	8,004	8,352
Parking	21,600	22,680	23,813	25,003	26,256	27,566	28,944	30,394	31,915	33,509	35,184
Retail Tenant Rent	75,000	75,000	75,000	81,950	81,950	81,950	81,950	81,950	97,350	97,350	97,350
Recoverable Expenses (TIM's)	15,000	15,550	16,050	16,650	17,200	17,800	18,450	19,100	19,750	20,450	21,150
Potential Gross Income	451,620	464,830	478,499	499,035	513,786	528,752	544,640	$\mathbf{5 6 0 , 8 1 6}$	592,811	610,201	628,260
Less Vacancy \& Credit Loss Allowence	10,201	10,548	10,909	11,263	11,651	12,043	12,459	12,881	13,314	13,767	14,237
Effective Gross Income	441,419	454,282	467,590	487,772	502,135	516,709	532,181	547,934	579,497	596,434	614,023
Operating Expenses											
Property Taxes	90,000	94,500	99,225	103,194	107,322	111,615	116,079	120,722	125,551	130,573	135,796
Insurance	45,000	47,250	49,613	52,093	54,698	57,433	60,304	63,320	66,485	69,810	73,300
Maintenance Rental Units	11,600	12,064	12,557	13,050	13,572	14,123	14,674	15,254	15,863	16,501	17,168
Maintenance Retail space	8,400	8,652	8,916	9,180	9,456	9,732	10,032	10,332	10,644	10,956	11,292
Resident Caretaker	36,000	37,440	38,940	40,500	42,120	43,800	45,552	47,376	49,272	51,240	53,292
Property M anager	17,657	18,171	18,704	19,511	20,085	20,668	21,287	21,917	23,180	23,857	24,561
Other Expenses	13,549	13,945	14,355	14,971	15,414	15,863	16,339	16,824	17,784	18,306	18,848
	222,205	232,022	242,310	252,499	262,667	273,234	284,267	295,746	308,779	321,243	334,257
Het Operating Income	219,214	222,260	225,280	235,273	239,468	243,475	247,914	252,189	270,718	275,191	279766
								Analysis Period plus One Year			

Cash Flow Projection Graph

Cash Flow from Sale

Shows the cash flow from sale (before and after tax) when the property is sold in ten years' time.
Sometimes called the Reversionary Value

Cash Flow from Sale	November 16,2012
Parklane Place	Investor Pro
Mixed User Building	Video Parklane Analysis

Cash Flowfrom Sale (Before Tax)

Sale Price	3,996,657
Less: Real Estate Commission	159,866
Selling Expenses	6,000
Legal Expenses	5,000
Net Sale Price	3,825,791
Less: Mortgage Repayment	1,374,335
Cash Flow from Sale (Before Tax)	2,451,456

Cash Flowfrom Sale (After Tax) USA tax calculations

Financial Measures. Financing Potential \& Risk Assessment

Appraiser's Approach to Present Value

Appraisers like to examine:
How much of the Present Value is generated by:

1. Net Operating Income

2. Capital Appreciation and sales proceeds (Called the Reversionary Value)

This analysis is done without financing and before tax.
This approach can identify if there is too much reliance on "Capital Appreciation" instead of the "Net Operating Income" in determining the value

Year	Net Operating Income	Present Value Appraisal Parklane Place Mixed User Building				August 13,2012Investor ProVideo Parklane Analysis	
		Present Value Discount Factor at 13.00\%	Present Value Het Operating Income	Property Reversion (Sale)	Present Value Discount Factor at 13.00\%	$\begin{gathered} \text { Present Value } \\ \text { Property } \\ \text { Reversion (Sale) } \\ \hline \end{gathered}$	overall Present Value
Year 1 Jan-Year 1 Dec	219,214	0.88495575	193,995				193,995
Year 2 Jan-Year 2 Dec	222,260	0.78314668	174,062				174,062
Year 3 Jan-Year 3 Dec	225,280	0.69305016	156,130				156,130
Year 4 Jan-Year 4 Dec	235,273	0.61331873	144,298				144,298
Year 5 Jan-Year 5Dec	239,468	0.54275994	129,973				129,973
Year 6 Jan-Year 6- ${ }^{\text {dec }}$	243,475	0.48031853	116,946	Sale Procee			116,946
Year 7 Jan-Year 7 Dec	247,914	0.42506064	105,378	Sale Procee			105,378
Year 8 Jan-Year 8 Dec	252,189	0.37615986	94,863				94,863
Year 9 Jan-Year 9Dec	270,718	0.33288483	90,118				90,118
Year 10 Jan-Year 10 Dec	275,191	0.29458835	81,068	3,825,791	0.29458835	1,127,033	1,208,101
		Present Values	1,286,831			1,127,033	2,413,864
				53.31% of the value is generated by the Net Operating Income			
Present Value ofReversion (Sale)		$\begin{array}{r} 1,286,831 \\ 1,127,033 \\ \hline \end{array}$	$\begin{aligned} & 53.31 \%< \\ & 46.69 \%< \end{aligned}$				
Present Value at 13.00%		2,413,864	100.00\%	46.69% is generated by capital appreciation			

Revenue \& Expense Projections

Determining the optimum holding period

Assumes the building is sold at the end of each year.
In this example, the maximum Internal Rate of Return (IRR) is 15.56% before suggesting the best time to sell the building is at the end of year 3

IRR \& MRR Year by Year (Before Tax) Parklane Place Mixed User Building					August 14, 2012Investor ProVideo Parklane Analysis	
Year		nvestment Year 1	Estim ated Sale Price		IRR (Before Tax)	MIRR (Before Tax)
Year 1 Jan-Year 1 Dec		(3,000,000)	\$	3,175,140	12.44\%	12.44\%
Year 2 Jan-Year 2 Dec				3,218,288	12.46\%	12.14\%
Year 3 Jan-Year 3Dec				3,361,047	$\geqslant 14.56 \%$	13.85\%
Year 4 Jan-Year 4 Dec				3,420,966	14.12\%	13.14\%
Year 5 Jan-Year 5 Dec				3,478,220	10.82\%	9.83\%
Year 6 Jan-Year 6 Dec				3,541,624	11.04%	9.73\%
Year 7 Jan-Year 7 Dec				3,602,694	11.13\%	9.72\%
Year 8 Jan-Year 8 Dec				3,867,401	12.27\%	10.60\%
Year 9 Jan-Year 9Dec				3,931,295	12.14\%	10.39\%
Year 10 Jan-Year 10 Dec				3,996,657	12.04\%	10.19\%
Modified Internal Rate of Return (MIRR)				Best time to sell		
Short Term Financing Rate (Before Tax) Short Term Reinvestment Rate (Before Tax)			7.000\%			
			1.500\%			

Investment Analysis. Option B. Seller provides a second mortgage for 5 years

To reduce the buyer's equity from 40% to 25% the seller provides a second mortgage of $\$ 450,000$ for five years.

First Mortgage: $\$ 1,800,000$, Interest Rate: $6.00 \%, 25$ Amortization for 5 years Loan to Value Ratio: 60\%

Second mortgage: $\$ 450,000$ interest only mortgage at 8.00% for 5 years
Equity: \$750,000 (25\%)
At the end of the first 5 years:
3. The outstanding balance of the first mortgage and the second mortgage of $\$ 450,000$ is paid off.
4. A new first mortgage is placed on the property beginning of Year 6 January using a 1.25 Debt Service Coverage Ratio for $\$ 2,500,000$ at 6% interest, 25 year amortization.

Question:

How does the return (Internal Rate of Return) change if the seller carries a second mortgage for \$450,000 interest only loan at 8% for five years? The property will be refinanced at the end of the fifth year using a Debt Service Coverage Ratio (DSCR) of 1.25

Net Cash Flow Report Option B with Seller Financing

Net Cash Flow (Before Tax)
Parklane Place Mixed Use Building with Seller Financing

Year	Investment		Financing			Operating Cash Flow (Before Tax)		Sale Proceeds (Before Tax)	Net Cash Flow (Before Tax)	
				Borrow	Paid Back					
Year 1 JarrYear 1 Dec	\$	(3,000,000)	\$	2,250,000		\$	44,045		\$	(705,955)
Year 2 JarrYear 2 Dec		.		-	-		47,091	-		47,091
Year 3 JarYear 3 Dec		-		-	-		50,111	-		50.111
Year 4Jarrear 4 Dec		-		-	-		60,104	-		60,104
Year 5 Jar-Year 5 Dec		-		\cdot	(2,068,777)		84,298	-		(2,004.479)
Year 6 Jar Year 6 Dec		(250,000)		2,500,000	.		50,185	-		2,300,185
Year 7 Jar Year 7 Dec		.		.	-		54,623	-		54,623
Year 8 JarrYear 8 Dec		-		-	-		58,998	-		58.898
Year 9Jar-Year9 Dec		-		-	\cdot		77.428	-		77.428
Year 10 Jan-Year 10 Dec		-		-	(2,248,302)		81,900	3,830,786		1,684,384
								Total	\$	1,602,390

Financial Returns (Before Tax) with Financing
Internal Rate of Return (IRR)
Net Present Value (NPV) at 13.00%
Modified Internal R ate of R eturn (MIRR)

Short Term Reinvestment Rate (Before Tax) 1.500\%

The Seller Financing increases the Internal Rate from 12.04% to 15.17% a 26% increase but increases the financial risk

Financial Impact with Seller's second mortgage

Financial Operating Ratios With the Seller's financing					
	Total Loant (A) End of	Value Ratio Year) using	Debt	Default Raio	Overal Opersing
	Original Loan	Outstanding	Coverage	(Breakeven)	Expense Ratio
Year	Amount	Loan Balance	Ratio	(Using PGl)	(Using PGl)
Year 1	70.86\%	69.85\%	1.25	8799\%	49.20\%
Year 2	69.91\%	67.86\%	1.27	87.60\%	49.92\%
Year 3	66.94\%	63.90\%	1.29	8725\%	50.64\%
Year 4	65.77\%	61.66\%	1.34	85.70\%	50.60\%
Year 5	64.69\%	59.48\%	1.37	8522\%	51.12%
Year 6	70.59\%	69.33\%	1.26	8823\%	51.68\%
Year 7	69.39\%	66.85\%	1.28	8768\%	52.19\%
Year 8	64.64\%	60.97\%	1.30	8720\%	52.73\%
Year9	63.59\%	58.63\%	1.40	8469\%	52.09\%
Year 10	62.55\%	56.25\%	1.42	8432\%	52.06%

Comparison Report

Net Cash Flow(Before Tax) $\begin{aligned} \text { (}\end{aligned}$		Investment Video Parklane Analysis	Investment Video Parklane Seller Financing
	0	(1,200,000)	(750,000)
	1	80,045	44,045
	2	83,091	47,091
	3	88,111	50.111
	4	96,104	60,104
	5	(149,702)	245.521
	6	104,306	50,185
	7	108,745	54,623
	8	113,019	58,898
	9	131,549	77,428
	10	2,587.478	1,664,384
	11		
	Total	2,040,746	1,602,390
Before Tax Financial Retum			
With Financing			
Intemal Rate of Retum (IRR)		12.04\%	$\geqslant 15.17 \%$
Net Present Value (NPV)		(\$81,854)	\$116,269
NPV. Discount Rate		13.00\%	13.00\%
MIRR		10.19\%	12.35\%
Shortterm fin ancing rate		7.000\%	7000\%
Shortterm reinvestment rate		1.500\%	1500\%

What happens when the building is refinanced in 5 years?

Create a new first mortgage
Pay off OSB First Mortgage
Pay off OSB Second Mortgage
New owner gets
\$2,500,000
1,608,777
450,000
\$ 431,223

When the new mortgage is put in place at the end of the first five years the funds will be used to pay off the outstanding balance of the existing first mortgage of $\$ 1,608,777$ and the second mortgage of $\$ 450,000$ with the investor receiving cash of $\$ 431,223$.

Summary from the Buyer's and Seller's perspective

It is helpful to summarize the advantages and disadvantages from the buyer's and seller's perspective

Summary from the buyer's perspective

The challenge
For the buyer to get a 13% IRR before tax the price has to drop from $\$ 3,000,000$ by $\$ 81,854$ to $\$ 2,918,146$. The challenge is that the buyer has to come up with 40% equity which is a lot of money. This will make it hard to put the deal together.

The good news

The analysis indicates that there is plenty of room to have the seller provide a second mortgage for five years.

The solution

Explore a second mortgage with the seller
$\$ 450,000$ Interest only at 8.00% for five years
Refinance the first mortgage at the end of 5 years

Financial impact of the buyer

The seller's second mortgage increases the return (IRR) from 12.04\% to 15.27\%
Reduces the buyer's equity from 40% to 25%
Refinancing at the end of five years the buyer (investor) receives \$431,223 cash

Risk

Default or Breakeven Point goes for 80% to 88% which is a little high
Debt Service Ratio goes from 1.58 to 1.25
Carrying the seller's second mortgage increases the risk but the investment is relatively safe with a 1.25 Debt Service Ratio.

Summary from the seller's perspective

Agreeing to the second mortgage arrangement makes the property much easier to sell
There are many more buyers if the equity is 25% compared to 40% equity

Recommendations

1. Check that the current first mortgage allows a second mortgage to be placed on the property
2. Find out if the first mortgage can be paid off in five years' time
3. Consult with an accountant to establish the tax consequences of selling the property and carrying a second mortgage
4. If cleared by your legal and tax advisors offer the second mortgage but consider increasing the price above $\$ 3,000,000$ because the second mortgage increases the buyer's return from 12.04\% to 15.20% and the buyer's desired return is 13%

Recap

We started by asking the following questions:

1. How much to pay for the property to get the investor's desired return of 13% before tax?
2. Is there potential for increasing the financing now or in the future?
3. How risky is the investment?
4. What is the financial impact on having the seller carry a second mortgage at 8.00% for five years?

We then carried out real estate investment analysis to answer these questions and developed recommendations from the buyer's and seller's perspective.

Summary. The building blocks of investment analysis

Analysis Period

How long will the property be held?

Inveestor

Investor's Desired Return \& Tax Rate Before or after tax analysis

Investments

Purchase price \& future capital expenditures
Expenses
Expense Proiections
Revenues
Revenue \& vacancy allowance projections
Financing
Initial \& future financing

Sale

How the sale price will be determined

Cash Flows. Timing and Sign Conventions

Introduction

When carrying out discounted cash flow analysis and calculating the Internal Rate of Return (IRR) and the Net Present Value (NPV) we follow the industry standard timing and sign convention.

The reason we use a timing convention is that we are discounting the cash flow back to time period zero or the beginning of the first year to calculate the Internal Rate of Return and Net Present value

Time period zero. This is when the initial investment is made. The beginning of the first year
Cash flows. Occur at either the beginning or end of the year even if they occur during the year Examples: Investments are assumed to be made at the beginning of the year Revenues occur at the end of the year

Sign convention. The best way to decide whether a cash flow is "Positive" or "Negative" is from the investor's viewpoint and their bank account.

Money coming into the investor's bank account is positive such as:
Rent and other revenues, sale of the building at the end of the analysis period Creation of a mortgage

Money going out of the investor's bank account is negative such as:
Initial investment and future capital expenditures
Expenses, principal, and interest payments. Repayment of a mortgage

Investment and Future Capital Expenditures

We can analyze an investment using either "Before" or "After" tax analysis.
Before Tax Analysis. The investment or purchase price can be a single number. E.g. \$3,000,000
After Tax Analysis. To set up the depreciation we break the purchase into "Land" and "Improvements". Land is not depreciable but the improvements are.

Land	$\$ 1,000,000$ Non depreciable
Improvements	2,000,000 Depreciable asset
Purchase Price	$\$ \mathbf{3 , 0 0 0 , 0 0 0}$

Investments and Future Capital Expenditures. Timing and sign convention

	Timing	Sign Convention
Purchase (Investment)	Beginning of year	Negative $\$ 3,000,000$ (Outflow)
Future capital expenditures Roof replacement. Year 6	Beginning of year	Negative $<\$ 250,000$ per mos. $>$ (Outflow)

[^0]
Financing \& Refinancing

Creation of a mortgage

For discounting purposes, the creation of a mortgage is assumed to occur at the beginning of the year even if the funds were received during the year.

If the mortgage was arranged when the property was purchased the funds are assumed to be received at the beginning of the year which is time period zero.

Strange as it may seem, funds flowing from the creation of a mortgage are "Positive" because they are a cash inflow from the investor's perspective.

Repayment of a mortgage

A mortgage may be repaid at any time during the analysis or holding period>. The outstanding mortgage balances at the end of the "Analysis Period" are always repaid when the property is sold.

For discounting purposes, the repayment of a mortgage is assumed to occur at the end of the year even if the mortgage was repaid much earlier in the year.

Principal and Interest Payments

Generally paid monthly but are assumed to be paid at the end of the year when discounting the cash flows to calculate the Internal Rate of Return (IRR) and Net Present Value (NPV)

Principal and interest payments are negative because they are a cash outflow.

Financing. Timing and sign convention summary

	Timing	Sign Convention
Creation of the mortgage	Beginning of year	Positive $\$ 1,800,000$ (Outflow)
Repayment of the mortgage	End of year	Negative $<\$ 1,374,333>$ (Outflow)
Payments of Principal \& Interest	End of year	Negative $<\$ 11,597$ per mos. $>$ (Outflow)

Revenues, Expenses \& Vacancy Allowances

In developing the cash flows we project the revenues, vacancies and expenses out over the analysis or holding period plus one year.

As an example, if the analysis period was 10 years we would project the revenues, vacancies and expenses over 11 years even though the property is being sold at the end of the tenth year.

The reason we project one year past the analysis period is that we want to develop the Net Operating Income for the year following the sale. Investors and appraisers, while interested in past performance, are most focused on future incomes and expenses.

The traditional way to calculate the sale price at the end of the analysis period is to use the "Net Operating Income" for the year following the sale and the appropriate Cap Rate.

Timing

Revenues and expenses are assumed to occur at the end of the year even though the rents may be received monthly. Most expenses are paid monthly. Some expenses such as property taxes and insurance may be paid yearly.

As an example, if the rent is $\$ 12,000$ per month and received at the beginning of the month, the rent for the year is $\$ 144,000$ and is assumed to be received at the end of the year when discounting to calculate the Internal Rate of Return (IRR) and Net Present Value (NPV)

Sign Convention

Revenues are cash inflows and are positive.
Expenses are cash outflows and are negative
Revenues \& Expenses. Timing and sign convention summary

	Timing	Sign Convention
Revenues. Rent Year 1	End of year	Positive $+\$ 46,000$ (Inflow)
Expenses. Property Taxes	End of year	Negative $<26,000>$ (Outflow)

Sale and Selling Expenses

At the end of the analysis period, the property is assumed to be sold.
There are a variety of ways to calculate the value of the property at the end of the analysis period but the most common method is to use the Net Operating Income for the year following the sale and a Cap Rate.

We also have to estimate the real estate and legal fees and associated closing costs

Timing

The sale proceeds are assumed to occur at the end of the last year of the analysis period when discounting to calculate the Internal Rate of Return (IRR) and Net Present Value (NPV)

If the analysis period was 10 years the sale is assumed to occur at the end of the tenth year.
Selling expenses such as real estate and legal fees and associated closing costs are assumed to have occurred at the end of the analysis period for discounting purposes.

Sign Convention

The "Sale Price" is a positive number because the cash received from the sale is a cash inflow.
Selling expenses such as real estate and legal fees and other closing costs are negative because they are expenses or cash outflows.

Sale and Selling Expenses. Timing and sign convention summary

	Timing	Sign Convention
Sale of the building	End of year	Positive $+\$ 3,612,335$ (Inflow)
Closing costs RE \& legal fees	End of year	Negative $<\$ 11,000>$ (Outflow)

Timing and Sign Conventions. Summary

This table summarizes the traditional timing and sign conventions used in real estate investment analysis when carrying out discounted cash flow analysis and calculating the "Internal Rate of Return (IRR)" and "Net Present Value (NPV)".

	Timing	Sign Convention
Purchase	Time period zero Beginning of year 1	Negative $<\$ 3,000,000>$ (Outflow)
Future capital expenditures Roof replacement. Year 6	Beginning of year	Negative $<\$ 250,000$ per mos. $>$ (Outflow)
	Beginning of year	Positive $+\$ 1,800,000$ (Inflow)
Creation of the mortgage	End of year	Negative $<\$ 1,374,333>$ (Outflow)
Repayment of the mortgage	End of year	Negative $<\$ 11,597$ per mos.> (Outflow)
Payments of Principal \& Interest		
	End of year	Positive $+\$ 46,000$ (Inflow)
Revenues. Rent Unit A	End of year	Negative Utilities <\$26,000> (Outflow)
Expenses. Utilities		
	End of year	Positive $+\$ 3,612,335$ (Inflow)
Sale of the building	End of year	Negative $<\$ 11,000>$ (Outflow)
Closing Costs Selling \& legal fees		

Cap Rate versus Internal Rate of Return (IRR)

This table compares the difference between the Cap Rate and the Internal Rate of Return (IRR) in determining the value of an income property.

Cap Rate	Discounted Cash Flow Analysis \& IRR
Only considers one year	Considers many years
Property is never sold	Property is sold at end of "Analysis Period"
Net Operating Income is constant Year 1 \$120,000 Yr. 2 120,000 forever	Income \& Expenses change every year
lgnores future capital expenditures Year 6. Replacing the roof for	Includes future capital expenditures
Excludes financing	Includes financing and refinancing
Simple and quick "Rule of Thumb"	Comprehensive analysis
Ignores the impact of taxes	Can be used for before \& after tax analysis
How realistic?	More realistic. Much better assessment of the financial performance of the investment

Cap Rate vs. the Internal Rate of Return (IRR)

The Cap Rate and the IRR are two completely different financial measures or returns.
They cannot be compared. It's like comparing apples and oranges
Let's look at a very simple analysis using the "Cap Rate" method and the "Discounted Cash Flow Analysis" approach using the Internal Rate of Return (IRR).

Case Study.

Property Type. Income property
Analysis Period: 5 years
Asking Price: $\$ 1,000,000$
Income \& Expense Statement
Revenue $\quad \$ 125,000$ (After vacancy allowance) increasing at 2.5% per year
compounding
Expenses (40\%) $\quad \underline{50,000}$
Net Operating Income 75,000

Financing

Loan Amount: \$600,000 Loan to Value Ratio is 60\% Interest Rate: 6.00\% Amortization Period: 25 years

Sale Price: The sale price at the end of the five years is based on the Net Operating income in year 6 using a 7.50\% Cap Rate

Cap Rate Approach

Cap Rate $=\frac{\text { Net Operating Income } \times 100}{\text { Price }}=\frac{75,000 \times 100}{1,000,000}=7.50 \%$

Discounted Cash Flow Analysis approach. Net Cash Flow Report

Results

The Cap Rate is 7.50% and the Internal Rate of Return is 15.08% which is closer to the true financial return.

The Internal Rate of Return (IRR) takes into account:

1. Financial leverage which generally increases the return but increases the risk
2. That rents increase each year
3. That the property is sold at the end of the Analysis Period
4. Take into account the Time Value of Money

The Cap Rate ignores these important factors and assumes the following:

1. Net Operating Income is constant and goes on forever

$$
\text { Yr. } 1 \text { \$75,000 Yr. } 2 \text { \$75,000 etc. }
$$

2. The property is never sold
3. Ignores the time value of money

Cap Rate and the Internal Rate of Return (IRR) Case Study

Following is an analysis carried out to show the relationship between the Cap Rate on purchase and the Internal Rate of Return for a specific property using the following assumptions:

The analysis looked at holding the property for ten years then selling.
The sale price in ten years' time was calculated using the Net Operating Income (NOI) in the $11^{\text {th }}$ year using the Cap Rate on purchase.

As an example, if the Cap Rate on purchase was 5.00%, the Cap Rate used to determine the sale price at the end of ten years was 5.00%.

Rental Apartment Building
Analysis Period: 10 years
Value in 10 year time is based on the NOI in the $11^{\text {th }}$ year using the purchase Cap Rate Rents. Increase at 3.00\% per Yr compounding
Expenses. 43\% Operating Expense Ratio
Debt Service Ratio maintained at 1.25
Cap Rate \& IRR Analysis.
Results. Cap Rate versus the Internal Rate of Return
Example. If the Cap Rate on Purchase was 6.00\% the Internal Rate of Return (IRR) is 10.29%

Cap Rate	3.50%	5.00%	6.00%	7.00%
Purchase Price	$\$ 15,197,143$	$\$ 10,638,000$	$\$ 8,640,000$	$\$ 7,328,571$
Vacancy Allowance	1.50%	3.00%	4.00%	5.00%
Financing	$\$ 5,152,000$	$\$ 5,069,568$	$\$ 5,000,000$	$\$ 4,758,750$
Debt Service Ratio	1.25	1.25	1.25	1.25
Loan to Value Ratio Equity	33% 67%	48% 52%	58% 42%	75% Sale Price in 10 years
Annual appreciation to	5.9%	$3.423,744$	$\$ 14,078,906$	$\$ 11,611,469$
Annu provide a 9.00\% IRR	$\$ 9,849,014$			
Internal Rate of Return	5.67%	7.70%	2.1%	0.13%
Investment Risk	Low Prime	Medium	Medium	Higher

The relation between the Cap Rate and the Internal Rate of Return (IRR) Vancouver Downtown office market Source: Altus Group. In Depth report June 2011

Conclusion: Relationship between the Cap Rate \& the Internal Rate of Return (IRR)

The only way to connect a Cap Rate and the Internal Rate of Return is by analyzing a specific income property. We can, however, make the following observations:

1. The Internal Rate of Return is generally higher than the Cap Rate under normal circumstances
2. For a typical Cap Rate of 7% to 8%, the Internal Rate of Return before tax will be around 12% to 14\%
3. The lower the Cap Rate the lower the Internal Rate of Return (IRR) but also the lower the risk
4. A good rule of thumb for the investor's "Desired Return (IRR)" or "Discount Rate" is 12% to 14% before tax for Cap Rates around 7.5\%

Caution

These are very general observations and may not always apply. Many factors influence the Internal Rate of Return and the investment risk such as:

1. The financial leverage. Increasing the financings lowers the equity and increases the Internal rate of return but increases the risk which the example shows.

Financial Returns (Before Tax) with Financing	Financial Returns (Before Tax) without Financing
Internal Rate of Return (IRR) 12.04%	Internal Rate of Return (IRR) 8.94\%

2. The quality of the tenants. The poorer the quality of the tenant the higher the risk of defaulting on the rent or moving out prematurely
3. Whether a major tenant will renew their lease when it expires
4. Future major expenditures such as replacing the roof, a boiler or the HVAC system

All of these will influence the Internal Rate of Return and the relationship with the Cap Rate

When does the Cap Rate equal the Internal Rate of Return?

The Cap Rate and the Internal Rate of Return are nearly the same when:

1. The income is constant and goes on for many years. At least 75 years
2. There is no residual value such as the sale of the property or asset

Case Study

A farmer has leased a section of his farm to a wind farm operator for $\$ 100,000$ for 40 years.
An investor is interested in buying the remaining income stream for $\$ 1,200,000$. There are 25 years remaining on the lease.

Question: What is the Cap Rate and the Internal Rate of Return?

$$
\text { Cap Rate }=\frac{\$ 100,000 \times 100}{\$ 1,200,000}=8.33 \%
$$

Internal Rate of Return
Investment <\$1,200,000
Annual Cash Flow \$100,000 per year for 25 years
Internal Rate of Return: 6.678\%
The following table shows the Internal Rate of Return for different numbers of years

Number of Years At $\$ 100,000$ per year	Internal Rate of Return	Cap Rate	\% Difference
25	6.678%	8.33%	25%
30	7.337%	8.33%	14%
40	7.941%	8.33%	4.89%
50	8.169%	8.33%	1.93%
75	8.312%	8.33%	0.22%
100	8.33%	8.33%	0.00%

Conclusion

For the Cap Rate and the Internal Rate of Return to be the same requires:

1. A constant annual income. The example uses $\$ 100,000$ per year
2. There is no residual or reversionary value at the end of the time period
3. Long the time period. Fifty years

Cap Rate versus Internal Rate of Return (IRR). Summary

The Cap Rate is a very simplistic, quick approach to valuing an income property and is based on the following assumptions:

1. The Net Operating Income is constant and goes on forever
2. The property is never sold

The Cap Rate approach ignores the time value of money and that cash flows change over time.
In contrast, the discounted cash flow approach which generates the Internal Rate of Return (IRR) takes into account the changing cash flows resulting from buying, financing, operating and selling the property over the ownership period.

The discounted cash flow analysis is a much more comprehensive and rigorous approach than the Cap Rate and is the best approach for analyzing complex real estate investments.

Relationship between the Cap Rate and the Internal Rate of Return (IRR)

The only way to connect the Cap Rate and the Internal Rate of Return (IRR) is to explore the relationship between the Cap Rate and the Internal Rate of Return (IRR) is by carrying out discounted cash flow analysis on a specific property and then varying the purchase Cap Rate to see the impact on the Internal Rate of Return (IRR)

Some general observations:

1. The Internal Rate of Return is generally higher than the Cap Rate
2. The lower the Cap Rate the lower the Internal Rate of Return (IRR) but also the lower the risk
3. On a typical investment where the Cap Rate is around 7.5% the Internal Rate of Return (IRR) is around 12% to 14%

When does the Cap Rate equal the Internal Rate of Return (IRR)?
The Cap Rate and the Internal Rate of Return (IRR) are the same if the following conditions exist:

1. A constant annual income. Example $\$ 100,000$ per year for 50 years
2. There is no residual or reversionary value at the end of the time period
3. Long the time period is involved. A minimum of 50 years

What does the term "Return" mean?

There are various terms used to describe a "Return on investment"
If an investor asks what is the:
Return?
Yield?
Return on Investment?
ROI?
Bottom line?
.......you need to ask the investor to define what they mean by:
"Return", "Yield", "Return on Investment", "ROI" or the "Bottom Line"
The following are all financial returns on investment:
Cap Rate $=$ Net Operating Income $\times 100$ Price

Return on Equity. Also called "Cash on Cash" the "Equity Dividend Rate"
$=($ Net Operating Income - Debt Service) $\times 100$ Equity

Internal Rate of Return (IRR)
Modified Internal Rate of Return (MIRR)
Also called the "Financial Management Rate of Return" or "FMRR"
Investor's Discount Rate. The discount rate is equivalent to the Internal Rate of Return
Sometimes investors develop their own method of calculating a financial return that works for them.
As an example, an investor has developed her own method for calculating the "Return on Investment" and uses the following formulae:

Return on Investment $($ ROI $)=$ Avg. yearly cash flow $+($ Sale Price - Purchase Price $) /$ No. of Yrs Initial Equity

Real Estate Taxation. Overview

The table shows the different kinds of real estate taxes and the difference between the USA and Canadian calculations. Both countries have:

Taxes on yearly operating profits
Mortgage interest is a deductible expense
Allow the depreciation of the improves but not the land
Capital gain tax
Recaptured depreciation tax which occurs if too much depreciation has been claimed
The major difference is how the taxes are calculated.

	USA	Canada
Interest is expensed Depreciation expensed	Yes Yes	Yes. Yes. Called CCA
Depreciation First year First year rules	Real Property. Mid month Other assets. Mid year Have to claim depreciation	50\% of the asset value Don't have to claim depreciation
Tax sheltering Claiming losses against other income	Yes. Active Investors Passive investors Loss transfer limitation rules apply	Generally no
Capital Gain	Taxed at 15\%	50\% of gain added to income Taxed at marginal tax rate
Recaptured Depreciation	Taxed at25\%	Recapture added to income Taxed at marginal tax rate

Capital Gains Tax

A capital gain is the difference between what you paid for an investment and what received when you sold that investment.

You have a capital gain when you sell or are considered to have sold, a capital property for more than the total of its cost basis, and the outlays and expenses incurred to sell the property.

Cost Basis

The "Cost Basis" is:

1. Purchase price plus acquisition costs such a legal and appraisal fees, transfer costs etc.
2. Plus "Capital Expenditures" such as replacing the roof, elevator, HVAC system etc.

Amount Realized or Proceeds of Sale on Disposition

The Sale Price less selling expenses such as legal, real estate fees, advertising costs, etc.

Capital Gain

Capital Gain = Amount Realized on Sale - Cost Basis

Capital Gains Tax

USA Generally 15% but different rates apply to low income earners
Canada. 50% of the gain is added to the individual or corporate income and taxed at the investor's marginal tax rate

Depreciation Claims

Assets, such as real estate improvements have a useful life longer than one year and are expensed over time thoroughly yearly depreciation claims. The impact of the yearly depreciation claim is to increase the after tax cash flow because depreciation is a "non-cash "expense.

Each year the investor claims depreciation following the rules established by the tax department on the capital assets to reduce the taxable income as shown below and claims the depreciation as an operating expense. Land cannot be depreciated for tax purposes.

Note: In Canada depreciation for tax purposes is called "Capital Cost Allowance or CCA"

-			Operating Cash Flow Yearly Parklane Place Mixed User Building			
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
CASH FLOW BEFORE TAX						
Potential Gross Income	451,620	464,830	478,499	499,035	513,786	528,752
Less: Vacancy \& Credit Loss Allow.	10,201	10,548	10,909	11,263	11,651	12,043
Effective Gross Income	441,419	454,282	467,590	487,772	502,135	516,709
Operating Expenses	222,205	232,022	242,310	252,499	262,667	273,234
Net Operating Income	219,214	222,260	225,280	235,273	239,468	243,475
Less: Principal Payments	32,041	34,017	36,115	38,343	40,707	43,218
Interest payments	107,128	105,152	103,054	100,827	98,462	95,951
CASH FLOW BEFORE TAX	80,045	83,091	86,111	96,104	100,298	104,306
Less Income Taxat 35.00\%	14,844	15,533	17,325	21,602	23,898	17,429
CASH FLOW AFTER TAX	65,200	67,557	68,786	74,502	76,401	86,877
InCOME TAX CALCULATIONS						
Net Operating Income	219,214	222,260	225,280	235,273	239,468	243,475
Less: Interest P ayments	107,128	105,152	103,054	100,827	98,462	95,951
Depreciation \& Amortization	69,673	72,727	72,727	72,727	72,727	97,727
Taxable Income	42,413	44,381	49,499	61,720	68,279	49,797
Income Tax at 35.00\%	14,844	15,533	17,325	21,602	23,898	17,429
Depreciation claim reduces the taxable income						

Amortization

Refers to spreading an intangible asset's cost over that asset's useful life.
For example, the cost of acquiring a lease by the landlord such as the leasing fee or cash payments to the tenant for leasehold improvements would likely be amortized over the term of the lease depending on the applicable tax rules.

Example: To acquire a lease with a five year term the landlord pays the leasing agent $\$ 40,000$ and gives the tenant $\$ 80,000$ cash for leasehold improvements. The total cost of acquiring the lease is $\$ 120,000$ which would be amortized over the 5 year term at $\$ 120,000 / 5$ at $\$ 24,000$ per year. From the tenant's perspective, the $\$ 80,000$ cash inducement is treated as income.

Recaptured Depreciation Tax

When the property is sold, if the value of the improvement on sale is greater than the "Depreciated Balance" there will be recaptured depreciation tax.

Allocation of the purchase price between and improvements

When the property is sold, the buyer and seller will negotiate the allocation of the sale price between:
Land
Improvements
The Seller wants the value of the improvements to below to minimize or avoid depreciation tax
The buyer wants the value of the improvement to be high to maximize the yearly depreciation claims claim and minimize yearly income taxes

Recaptured depreciation on sale. USA Example
Capital Gain: Gain is taxed at 15.00%
Recaptured Depreciation: Taxed at 25.00\%

```
Cash Flowfrom Sale (After Tax)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Net Sale Price} & \multirow[t]{2}{*}{4,936,162} \\
\hline Less: Capital Gains Tax & & \\
\hline Net Sale Price & 4,936,162 & \\
\hline Less Cost Basis & 3,820,000 & \\
\hline Capital Gains & 1,116,162 \(\times 15.00 \%\) & 167,424 \\
\hline \multicolumn{3}{|l|}{Less: Recaptured Depreciation} \\
\hline Tax Value of Improvements on Sale & 2,820,000 & \\
\hline Less Adjusted Basis & 1,830,431 & \\
\hline Recaptured Depreciation & 989,569 \(\times 25.00 \%\) & 247,392 \\
\hline \multicolumn{2}{|l|}{Net Proceeds (A.fter Tax)} & 4,521,345 \\
\hline Less: Mortgage Repayment & 1 & 1,594,349 \\
\hline \multicolumn{2}{|l|}{Cash Flow from Sale (After Tax)} & 2,926,996 \\
\hline
\end{tabular}
```


Recaptured depreciation on sale. Canadian Example

Capital Gain: 50\% of the Gain is added to income \& taxed at the Investor's marginal tax rate
Recaptured Depreciation: Added to income and taxed at the Investor's marginal tax rate

Cash Flowfrom Sale (After Tax)		
Net Sale Price		4,936,162
Less: Capital Gains Tax		
Net Sale Price	4,936,162	
Less Cost Basis	3,840,000	
Capital Gains	1,096,162 $\times 37.00 \% \times 50.00 \%$	202,790
Less: Recaptured Depreciation Tax		
Tax Value of Improvements on Sale	2,840,000	
Less Undepreciated Balance	1,940,758	
Recaptured Depreciation	899,242 $\times 37.00 \%$	332,720
Net Proceeds (After Tax)	A	4,400,652
Less: Mortgage Repayment		1,589,449
Cash Flow from Sale (After Tax)	Marginal Tax Rate	2,811,203

Calculating Recaptured Depreciation

The following table shows how the recaptured depreciation tax depends on the allocation of the purchase price between the "Land" and the "Improvements". Recaptured depreciation tax can range from zero to a full recapture where all the depreciation claimed over the period of ownership is subject to recaptured depreciation tax.

PURCHASE PRICE		\$2,000,000		
Land Improvements		600000		
		1,400,000		
DURING OWNERSHIP		Value of Improvements		\$1,400,000
			reciation Claimed	500,000
		Adjusted Basis (Undepreciated Balance)		\$900,000
ON SALE				
	Sale Price	\$3,000,000	\$3,000,000	\$3,000,000
Allocations	Land	1,500,000	2,000,000	2,100,000
	ovements	1,500,000	1,000,000	900,000
		\$3,000,000	\$3,000,000	\$3,000,000
RECAPTURED DEPRECIATION				
	ovements	1,400,000	1,000,000	900,000
Undep	d Balance	900,000	900,000	900,000
Recaptured Depreciation		500,000	100,000	0
		Recapture	Partial Recapture	Recapture
Note: The recaptured depreciation can never be more than the depreciation claimed				
RECAPTURED DEPRECIATION TAX				
USA Recaptu	at 25%	\$125,000	\$25,000	\$0
CND Recapture Tax at 35\%		175,000	35,000	0

No recaptured depreciation tax

If the value of the improvements on sale is equal to (which means the improvements have been perfectly depreciated) or less than the undepreciated balance or adjusted basis the recaptured depreciation tax is zero.

Full recapture

A full recapture occurs when the value of the improvements on sale is greater than on acquisition which means the improvements have appreciated not depreciated in value. In this case, all the depreciation claimed is subject to recaptured depreciation tax

Note that recaptured depreciation cannot be more than the depreciation claimed.

Partial recapture

Occurs when the value of the improvements on sale is less than on acquisition but greater than the undepreciated balance or adjusted cost basis. The difference between the value of the improvement on sales and the undepreciated value or adjusted cost basis is subject to recaptured depreciation tax

Capital Gain. Appreciation is taxed as a capital gain. The increase in value of $\$ 1,000,000$ is the purchase price of $\$ 3,000,000$ minus the acquisition cost of $\$ 2,000,000$ is taxed as a capital gain

Properties that may be hard to sell because of tax implications

Characteristics:

1. Owned for a long period of time
2. Gone up a lot in value
3. Heavily depreciated
and there is a large mortgage on the property.

When the owner sells:

Large Capital Gain. USA 15% of the gain is added to income
Canada 50% of the gain is taxed at the marginal tax rate
Large Recaptured Depreciation Tax.
USA. Recaptured Depreciation is taxed at 25\%
Canada. Recaptured Depreciation is added to income and taxed at the marginal tax rate
Large real estate fee and closing costs
.....and a large mortgage to pay off
The result. There is little money left from the sale

Seller Financing. Tax issues

Be careful about having the owner carrying financing without first checking with a tax accountant.
If the proceeds from the sale, after paying off the mortgage is small, there may not be enough money for the seller to pay the Capital Gains Tax and Recaptured Depreciation Tax as well as the real estate and legal fees.

Properties that may be hard to sell because of mortgage restrictions

Sometimes the mortgages registered on the property have restrictions that make it difficult to sell the property such as:

1. The mortgage cannot be paid off until the end of the term
2. The mortgage can be paid off but the penalty is very high making it difficult to pay off the mortgage
3. The first mortgage may not allow a second mortgage to be placed on the property preventing the seller from offering a second mortgage to reduce the equity needed by the buyer

Example

A seller and a buyer have agreed upon a price of $\$ 4,850,000$ for a prime mixed use building but unfortunately, the mortgage makes it difficult to complete the deal.

The details of the existing first mortgage are:
Loan Amount \$2,750,000 Outstanding Balance: \$2,319,000
Interest Rate: 6.50\%
Monthly Payment: \$17,000
Prepayment Period: The mortgage can't be paid off for another 4 years
Restriction: A second mortgage cannot be placed on the property
The buyer can arrange a new first mortgage for 4.50% for $\$ 3,500,000$ with a Loan to Value Ratio of 72%
Issues facing the buyer are:

Prepayment	Can't pay off the first mortgage for 4 years
Equity	$\mathbf{4 8 \%}$ or $\$ \mathbf{2 , 5 3 1 , 0 0 0}$ versus $\mathbf{2 8 \%}$ or $\$ 1,350,000$ for the new mortgage
Interest Rate	$\mathbf{6 . 5 0 \%}$ versus $\mathbf{4 . 5 0 \%}$ current market interest rate
Future Rate	Will the interest rate be higher than $\mathbf{4 . 5 0 \%}$ in $\mathbf{4}$ years' time?
Leverage	The higher equity reduces the financial leverage
Return (IRR)	Unless the price is dropped significantly the IRR will be much lower
$\mathbf{2 n d}^{\text {nd }}$ Mortgage	Not allowed. Can't set up a $\mathbf{2}^{\text {nd }}$ mortgage with the seller

Unless the seller is willing to drop the price significantly the first mortgage restrictions will prevent the sale of the property.

Introductory Case Study. Real Estate Investment Analysis

Showing the importance of financial leverage
The financial measures used to determine the loan amounts are:

1. Debt Service Ratio or Debt Coverage Ratio
2. Loan to Value Ratio. Sets the maximum loan amount

The lender calculates the loan amount using both measures and selects the method that yields the lowest loan amount. These lending criteria allow you to determine the potential for financing now and in the future.

Potential for financing now or in the future

Debt Service Ratio or Debt Coverage Ratio

$$
=\frac{\text { Net Operating Income }}{\text { Debt Service }}=\frac{\$ 240,000 \text { per yr. }}{\$ 180,000}=1.33 \text { Typical: } 1,25
$$

Note: Debt Service is the annual principal and interest payment

Loan to Value Ratio. Typical range 65\% to 75\%

Another useful measure for determining the financing now and in the future is the Default Ratio. Once the default ratio nears 85% there is little room to increase the first mortgage.

Default Ratio (Breakeven Point)

$=($ Operating Expenses + Debt Service $) \times 100$
Potential Gross Income
$=(\$ 230,000+160,000) \times 100=73 \%$
\$534,000

Risk assessment.
How risky is the investment?
The Default Ratio (Breakeven Point) and the Debt Service or Coverage Ratioare used to measure risk.
The example below shows the ratios for a moderate and high risk investment

	Moderate Risk OO	High Risk :
Default Ratio (Breakeven Point)	$\mathbf{7 2 \%}$	91%
Debt Service Ratio	1.31	1.07

The Impact of Financial Leverage. Case study

Simple example illustrating financial leverage

An investor is considering buying a home to rent out and is considering two options:

1) Buy one home with cash for $\$ 300,000$ and rent or
2) Buying 4 homes using 75% Loan to Value Ratio and rent

If the homes go up in value by 10%. The profit is:

1) One home bought with cash. Profit is $\$ 300,000 \times 10 \%=\$ 30,000$
2) Buy 4 homes using 75% LTV Ratio. Profit is $\$ 300,000 \times 10 \% \times 4=\$ 120,000$

Using financial leverage significantly increase the profit or return on investment

Case study. The impact of financial leverage

Office building
Capital Plaza
$8,400 \mathrm{Sq}$. Ft of rentable space
Funds available to invest: \$3,100,000
The case study explores the impact of the financing on the return on investment (Internal Rate of Return) using:

1. Zero financing
2. 45% LTV $\$ 1,395,00025$ years 4.50%
3. 75% LTV $\$ 2,350,00025$ years 4.50%

Zero Financing

Without financing the Internal Rate of Return (IRR) before tax is 8.29%

With Financing: 45\% LTV \$1,395,000 25 years $\mathbf{4 . 5 0 \%}$ interest rate

Adding financing using a 45% loan to value ratio, 25 year amortization, and 4.50% interest rate changes the return from 8.29% without financing to 10.65% which is a 29% increase in the return.

Can the financing be increased?
In year 1 the Loan to Value Ratio is around 44\%. The ceiling is generally around 75\% The Debt Service Ratio is 2.12. The Ratio can go down to 1.25 or lower.

Both measures suggest that the first mortgage can be increased.
How risky is the investment?
The two measures of risk are:
Debt Coverage Ratio 2.12 The Ratio can go down to 1.25 or lower Default Ratio or the Breakeven Point 60.22\%. Generally shouldn't exceed 85\%

The Debt Service Ratio and the Default Ratio suggest low risk.

With Financing: 75\% LTV \$2,350,000,000 25 years 4.50\%
Adding financing using a 75% loan to value ratio, 25 year amortization, and 4.50% interest rate changes the return from 8.29% without financing to 15.24% which is an 84% increase.

Can the financing be increased?

In year 1 the Loan to Value Ratio is around 74\%. The ceiling is generally around 75% The Debt Coverage Ratio is 1.27 . The Ratio can go down to 1.25 or lower.

Both measures suggest that there is little room to increase the first mortgage.

How risky is the investment?

The two measures of risk are:
Debt Service Ratio 1.27 The Ratio can go down to 1.25 or lower
Default Ratio or the Breakeven Point 82.28\%. Generally shouldn't exceed 85\%
The Debt Service Ratio and the Default Ratio suggest moderate to higher risk

Summary. The impact of financial leverage

With no financing, the Internal Rate of Return (IRR) is 8.29%. If a mortgage is added using a 45% Loan to Value Ratio the Internal Rate of Return (IRR) changes from 8.29% without financing to 10.65% which is an increase of 29%.

If a mortgage is added using a 75% Loan to Value Ratio the Internal Rate of Return (IRR) changes from 8.29% without financing to 15.24% which is an increase of 84%.

The use of financial leverage generally increases the return (IRR) but it also increases the investment risk.
In this example, the Debt Coverage Ratio has gone from 2.12 with a 45% Loan to Value Ratio down to 1.27 using a 75% Loan to Value Ratio indicating increased investment risk.

The Default Ratio (Breakeven Point) has gone from 60.22% with a 45% Loan to Value Ratio up to 82.28\% using a 75% Loan to Value Ratio.

A healthy balance is needed between the investment return and associated financing and risk.

	Loan to Value	Debt Coverage Ratio	Default Ratio (Breakeven Point)	Internal Rate of Return (IRR)	\% Increase
$\$ 0$	0%	-	-	8.29%	
$\$ 1,395,000$	45%	2.12	60.22%	10.65%	29%
$\$ 2,350,000$	75%	1.27	82.28%	15.24%	84%

Accumulated Wealth

The above example illustrates how financial leverage increases the return on investment (IRR) but financial leverage also allows the investor to buy a much larger building and accumulate more wealth.

The funds that are available to invest are: \$3,100,000.
Using a 75\% Loan to Value Ratio allows the investor to buy a property that is four times larger than one purchased using an investment of $\$ 3,100,000$ and no financing.

Using a 75\% Loan to Value Ratio and buying the largest building possible the wealth accumulated over the ten year period is $\$ 7,581,239$ compared with $\$ 2,805,888$ for the all cash purchase.

Conclusion

The use of financial leverage:

1. Increases the Return on Investment (IRR) from 8.29\% to 15.26%
2. Allows the investor to buy a much larger property $\$ 12,400,000$ versus $\$ 3,100,000$ for the all cash purchase
3. Accumulate greater wealth over the holding period. $\$ 8,851,239$ versus $\$ 1,890,000$ for the all cash purchase
4. Increases the investment risk

If you own an income property always look for the potential to refinance

Sometimes the best strategy if you own a property there is to refinance the first mortgage and take the funds from refinancing and buy another property.

Appendices

Information Sources and web sites

www.investitpro.com Visit the Online Learning Center for educational resources, articles, etc. www.investitacademy.com Commercial real estate education plus free resources and videos.

The following organizations provide information on income and operating expenses.

Institute of Real Estate Management (IREM)
www.irem.org
Tel: (312) 329-6000
Income/Expense Analysis. Office Buildings
Income/Expense Analysis. Shopping Centers
Income/Expense Analysis. Conventional Apartments
Income/Expense Analysis. Federally Assisted Apartments
Income/Expense Analysis. Condominiums, Co-ops \& PUDs
Building Owners and Managers Assoc. (BOMA) www.boma.orgTel: 1-800-426-6292 Office building expenses. Experience Exchange Report

International Council of Shopping Centers (ICSC) www.icsc.org
A variety of reports on sales, operating expenses, and the percentage by type of shopping center, location, etc.

National Apartment Owners Association www.naahq.org
Appraisal Institute www.appraisalinstitute.org
Excellent books on analyzing many kinds of properties including Hotel and Motels, Mobile Home \& RV Parks, Apartment Buildings, Nursing Homes, Land Subdivisions, Golf Courses, Marinas, Convenience Stores \& Retail Facilities, Shopping Centers, Religious Facilities, Rural Properties, Industrial Properties, etc.
www.loopnet.com USA \& Canada
www.costar.com www.REISReport.com http://www.thenewsfunnel.com/
Excellent free newsletters and blogs on commercial real estate markets
www.iciworld.com Canada
CCIM Institute. www.CCIM.com or CCIM.NET CCIM.STDB (Site to do business)

Excellent site for USA and Canadian construction costs:

www.rsmeans.com
Snaglt Screen Capture program www.techsmith.com
Used to produce the screen captures used in this manual. Great productivity tool.

[^0]: Example. If the roof was replaced in August of Year six for $<\$ 250,000>$ the expenditure is assumed to be made at the beginning of year 6 (or the end of year 5) for discounting purposes

